If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-29.75a+49=0
a = 1; b = -29.75; c = +49;
Δ = b2-4ac
Δ = -29.752-4·1·49
Δ = 689.0625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29.75)-\sqrt{689.0625}}{2*1}=\frac{29.75-\sqrt{689.0625}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29.75)+\sqrt{689.0625}}{2*1}=\frac{29.75+\sqrt{689.0625}}{2} $
| 51+36x=64x-51 | | 102+31x=64x+10 | | a^2-29.75+49=0 | | 11730=p*6 | | b^2-676b-57600=0 | | b2-676b-57600=0 | | x*x-1=3x | | 3n²+603n-16200=0 | | 64-2x=68-3x | | 10x+0.5(x+6)+.25(2x)=4.85 | | 6x-12=24-5x | | 3x+4x+5=6x+5 | | y*y-20y+64=0 | | 80t+16t^2=96 | | y×y-20y+64=0 | | 80t+4.9t^2=96 | | ((20-y)×(20-y))+(y×y)-272=0 | | (20-y)×(20-y)+y×y-272=0 | | (20-y)(20-y)+y×y=272 | | (x*x)+x-10=425 | | (2y^2)-40y+128=0 | | (2Y*2y)-40y+128=0 | | 2Y^2-40y+128=0 | | Y^2-20y+64=0 | | 2x^2-10+17=0 | | 2x-10+17=0 | | 9x2=16 | | 4.9t^2=719.6t | | 4x=x2 | | ½*9.8t^2=350*2.056t | | ½9.8t^2=350*2.056t | | 6(n+7)=66 |